
Architecting the Elephant:
Software Architecture and User Interface Design for Pachyderm 2.0

Michelle LaMar, California State University, USA
Joshua Archer, California State University, USA
Tom Hapgood, University of Arizona, USA
D'Arcy Norman, University of Calgary, Canada
Tim Wang, University of British Columbia, Canada

Abstract
This paper covers the processes of designing the system architecture and the authoring interface
for Pachyderm 2.0, as well as some of the fundamental conceptual strategies that enabled the
development of the software. It describes the architecture of the underlying frameworks,
applications, and content templates. Areas for potential collaboration and development are
identified.

Keywords: open-source; authoring tool; user interface; APOLLO; WebObjects; Pachyderm

Introduction
Examine the Mona Lisa up-close while listening to professional commentary. View an old
movie of Ansel Adams climbing up to the "Diving Board." Flip through pages of the
Gutenberg Bible and listen to music of the period.

The power of experiencing history, art and music in such multimedia expressions is
undeniable, and yet creating such a rich experience from scratch is extremely labor intensive.
The San Francisco Museum of Modern Art faced just that challenge in the creation of its
Making Sense of Modern Art exhibit. Their solution was to create an authoring tool to facilitate
the assembly of media-rich online exhibitions. Thus was Pachyderm 1.0 born.

Pachyderm became very successful within SFMOMA and was used to generate more than 10
extensive online multi-media presentations. As is commonly the case with successful
prototypes, its users found it indispensable, while at the same time it was running into the
limitations of its quick design and development. Users within and outside of SFMOMA loved
Pachyderm, but they wanted more than it could deliver. It was time to take the prototype
and build a carefully architected, extensible system within which future features could be
more easily developed.

Pachyderm 2.0, based on the SFMOMA’s original, is well underway now as part of a
partnership led by the New Media Consortium and SFMOMA and funded by the Institute for
Museum and Library Services. The project brings software development teams and digital
library experts from six NMC universities together with counterparts from five major
museums throughout North America to build a tool well suited to both the museum and
university environments.

Interface Design
The first version of the Pachyderm authoring system was built to maximize the quality of the
finished presentation, not to optimize the author’s experience while creating the

Architecting the Elephant
Page 2

presentation. Its user base was very small; SFMOMA authors became so familiar with the
quirks and inefficiencies of the authoring system interface that they hardly noticed them
anymore. Early user tests proved however that this would not be the case for the larger
audience. A goal of the Pachyderm 2.0 Project was to retain the power and potential of
SFMOMA’s original Pachyderm authoring system, with a simplified interface that enables a
wide variety of users to create strong presentations.

In order to facilitate the easy creation of presentations in Pachyderm, the team has employed
a few standard, proven methods of design. According to designer and educator Philip B.
Meggs (1992), the design process is a sequence of events that begins when the designer
receives an assignment and continues until the problem is solved and the solution is
accepted and implemented. The process includes defining the problem, gathering
information, searching for effective ideas, deciding on a solution and finally implementing.

Design of the new authoring screens was based on the existing tool in use by SFMOMA and
on the results of many discussions with the main user groups of the software, namely
museum curators and university faculty. In addition, the need to implement new features and
functionality required redesigning portions of the authoring process.

The first goal of the design effort was to define the authoring workflow. Working with a
variety of tools that ranged from iChat and Breeze screen-shares to markers on butcher paper,
the development team worked through iterations of the flow of authoring, determining the
easiest and quickest succession of screen interactions. The team created a flowchart
document for various users with boxes, lines and arrows based on target user groups and
scenarios of how certain people would use Pachyderm. By using such a graphical
representation of author workflows, the team was able to ascertain the best order for all the
interlinking screens, getting a user from the left side of the flowchart to the right using the
fewest amount of boxes, or tasks.

In this stage of the design came the first major departure from Pachyderm 1.0. The SFMOMA
workflow had authors creating individual presentation screens first, linking them to each
other, and then finally grouping them together as a presentation. The development team
decided to reverse the process. First an author creates a presentation, with a title and
description and then they create screens within the presentation. This ordering better
reflects the project-based approach of the target audience.

Once the workflow was established, the team began to sketch out the individual interface
screens in the interest of creating a basic graphical system with attention to all the elements
that needed to be on the screen, such as navigation and software controls such as "save" and
"delete."

Special attention was paid to the interface for creating and editing presentation screens since
authors spend considerable time on this task. Pachyderm 1.0 uses an approach based on
HTML forms for authoring presentation screens.

Architecting the Elephant
Page 3

Figure 1: The original forms-based interface. Figure 2: Mockup of the proposed drag-and-drop
 interface.

In early meetings the team sketched out visions of something far more powerful. Given the
increased sophistication of modern browsers using JavaScript, authors could be provided
with drag-and-drop functionality for adding their media into a screen template. As the idea
developed further, concerns were raised that while this would adding power, it might also be
adding complexity that would detract from the straight-forward authoring model that
endeared many to Pachyderm. The team conducted user tests and found that indeed, users
preferred the forms-based approach. They liked to be able to clearly identify all the "slots"
into which data could be entered. Given this feedback, the team made an unusual decision in
software design – the cool technical gadget was dropped in favor of the simpler approach.

Figure 3: Mockup of the updated forms-based interface resulting from user feedback.

The next stage called for turning the designs into a standards-compliant xhtml format that
could be read by Web browsers, where the actual authoring will take place. This included

Architecting the Elephant
Page 4

mocking-up the screens with actual Web form-based buttons and controls and
straightforward color and design treatment. The programmers on the team then took control
of these screen designs and made them function by marrying the xhtml coding and
programming elements. The testing of these working screens is underway at the time of this
writing.

During this testing time, the team is paying particular attention to feedback on issues of
usability and accessibility, with an eye to moving closer to a parity of visual design between
the authoring and presentation screens. The interface design can not be considered
complete until it has been proven usable by the intended user group.

Software Architecture
Since Pachyderm 1.0 was created to solve a set of needs internal to the SFMOMA, the
developers had a certain amount of leeway in the decisions they could make in terms of
platform architecture. They selected tools that would allow them to build the software faster,
and integrate with the existing SFMOMA collection management database. The tools they
chose to use, however, created dependencies that were very specific to the SFMOMA
environment. These dependencies included Windows IIS, ASP, Visual Basic, Windows 2000
Server, SQL Server, Macromedia Generator 1.0, and Filemaker 5.

As additional online versions of exhibits were needed, the Pachyderm 1.0 software was
adapted and extended, with pieces being added to support new functionality. The original
system was not designed with extensibility as a primary consideration, and the consequences
were such that both the database schema and the source code grew large, fragmented and
difficult to maintain.

The team knew from the conception of the Pachyderm 2.0 project that two key
enhancements would need to be made to the original product: platform independence and
extensibility of the template set. Platform independence would allow Pachyderm to be
installed and run on servers with different operating systems, different web servers and
different database applications. Template set extensibility meant that future authors would
be able to add new templates, or presentation screen types, to the original set of 12 that
SFMOMA designed.

Refactor or Rebuild
When a software prototype is developed into a full, robust application, there are two
accepted paths of development. The first is to throw away all the old code and rebuild from
the ground up. This is the more traditional approach; what results is known as a "throwaway
prototype." The assumption is that the developers will have learned a lot from coding the
prototype and they will be able to build it better the second time around. A newer approach
is to refactor the old code. This method involves isolating functional sections of the code (or
modules) and carefully rewriting them piece by piece while maintaining the functionality of
the whole application.

Refactoring has the advantages that the software as a whole continues to function
throughout the process, making testing much easier, and that the engineers are working
intimately with the original code and thus not losing any lessons learned the first time around
(Spolsky, 2000). Given the small development budget, the ambitious time line and the fact

Architecting the Elephant
Page 5

that the team programmers were not the original developers of Pachyderm 1.0, refactoring
seemed to be the most practical approach. It meant that the team would not have to re-solve
problems that the original developers had already solved very well, and that something
deliverable would always be there in case development fell behind schedule. Since
Pachyderm 1.0 was developed in Active Server Pages (ASP), a proprietary Microsoft language,
the team knew that in addition to refactoring, the code would have to be ported to a
platform-independent language. Thus the original approach was dubbed "Port and Refactor."
The first effort proved to be a sanity check on the whole approach. The team took the
prototype code, still in ASP, and created a version that could be installed on a Windows server
outside of SFMOMA. This turned out to be surprisingly difficult. The team found that the old
code not only relied on specific proprietary software, but in fact on specific outdated versions
of that software. By the time the "Pachyderm 1.1 Rhino" release, a Windows server installable
version of the software, was produced, the team had learned enough to reconsider the whole
development plan.

Through the development of the Pachyderm 1.1 version, the team began to analyze the
database schema and software design. As they waded into the source code, the team realized
that both the software architecture and the database schema were dependent upon the
twelve existing templates. In order to add a new template to the system, new authoring and
publishing code would have to be written specifically for that template and new database
tables would have to be designed and implemented. Clearly the system was not set up to
allow for template set extensibility. The team realized at that point that the "Port and
Refactor" approach would not work. Instead, the team needed to redesign and rebuild the
software architecture and database schema to make them both template independent.

Design Decisions
Having committed to a much more extensive re-write of the application, the team needed to
decide on a basic software architecture and a development platform. To support the need for
a template-independent architecture, the team developed a component-based approach. A
component in this sense is a basic data element of a presentation screen. Thus an image or a
block of text would be a component. If the system could be built so that it knew how to deal
with all the major components used in the core template set, it would also support new
templates that utilized the same components in different configurations without requiring
any new coding in the authoring system or the database.

The selection of a development platform, on the other hand, needed to reflect the goal of
creating a platform-independent application. The development platform includes the
language in which the software is coded as well as any pre-existing applications or
frameworks upon which the software will depend. To help in making this decision, the team
created a matrix of possible platforms, listing pros and cons for each suggestion, including
issues of expertise, ease of use, ease of learning, stability and scalability, and the ability to
leverage work already available in the suggested platform.

At the time, the "highest risk" component was Macromedia Generator, used to compile
images with associated metadata and publishing these in Flash (.swf) format. The Generator
product was discontinued several years ago and is no longer commercially available. Without
a functional replacement, it would not be possible to publish the Flash-formatted media that
are essential to a Pachyderm presentation. The search for replacements led to the jGenerator

Architecting the Elephant
Page 6

project - an open-source Java library designed to be a drop-in replacement for Macromedia
Generator. This jGenerator library was identified as the only reliably functioning Generator
replacement.

One of the requirements for Pachyderm 2.0 involved the ability to demonstrate database
independence. The system needed to be able to connect to a variety of database servers,
including Microsoft SQL Server, MySQL, Filemaker, and potentially many others that had yet
to be identified. The primary software development platform that offered this level of
database independence and about which the development team as a whole had a significant
amount of institutional knowledge was Apple’s WebObjects application server. WebObjects is
a java-based set of frameworks and applications, including a database management
framework called "Enterprise Objects Framework" (EOF). EOF would be able to take care of the
"heavy lifting" of connecting to various databases, and would allow the team to focus more
on application-level development.

The architecture of the WebObjects frameworks offered a high degree of modularity which
could be copied when developing the Pachyderm 2.0 application. The team could build a set
of shared functionality into a framework, which could be accessed by any WebObjects
application deployed on the server. This could let other groups easily build tools to integrate
with Pachyderm 2.0. The fact that WebObjects can be deployed on a variety of platforms,
including MacOSX, Windows 2000 Server, Solaris and Linux would satisfy the requirement
that the system not be tied to any single server vendor.

APOLLO
Concurrent with the start of Pachyderm 2.0 development, The University of Calgary was
working on the successor to the CAREO learning object repository, code-named "APOLLO."
APOLLO, built on top of WebObjects, was designed to be an extremely flexible set of
frameworks and applications that would allow the development of a wide variety of different
but related functionality, specifically aimed at enabling people to publish, locate, and reuse
learning objects.

The team realized that there was a strong overlap in requirements between Pachyderm 2.0
and APOLLO, and in the summer of 2004, decided to base Pachyderm 2.0 on the APOLLO
frameworks and concepts. This would allow the team to further focus the development effort
on the features directly required to support the presentation authoring application, while
working with the APOLLO developers to further enhance its functionality.

One very powerful feature of APOLLO is the ability to build small components and plug-ins
that can be integrated dynamically into a running application, allowing the addition of
customized functionality without modifying an entire application or framework.

APOLLO also provides a set of services for transforming media from one format to another,
which could be leveraged as part of the Pachyderm presentation publication process. As part
of that process, the system would need to be able to resize images, convert them into a Flash-
friendly format, and compile them into Flash-wrapped media for use in the final published
presentation. This process was a strong limiting factor in the scalability of Pachyderm 1.0, so
the ability to generate transformed media on the fly, and on demand, would allow the system
to support a potentially unlimited library of media assets.

Architecting the Elephant
Page 7

Open Source
The Pachyderm 2.0 project was strongly oriented toward open source development. It had
been a central theme in the project from the proposal stage onward, in an effort to ensure
collaboration from interested groups. The idea was for development to be as open as possible
and to result in a strong set of source code that could be used and extended by others. The
source code and developer’s guide for Pachyderm 2.0 will be released to the public in the fall
of 2005 under an Open Source Initiative (OSI) approved license.

Pachyderm Presentation Screens
Macromedia Flash is a popular application because it enables professional media designers to
easily create interactive and dynamic online experiences. Flash Player has been adopted in
web communities because of its ability to produce small files facilitating the streaming of rich
media content. Other electronic devices such as Web TV, Pocket PC and some cell phones are
supporting Flash files today. The secret of success is the small sized player (less than 500 K for
Flash Player 7). The new Pachyderm presentation templates are completely designed in Flash
MX 2004 and users are expected to have Flash Player 7.0 or above.

Flash-based web presentations have many advantages over traditional html-based web
contents. The most valued benefit of using Flash to author web content is that it is browser-
and platform-independent. The same Flash movie will look exactly the same cross-platform
(Windows, Mac OS, and Linux) and cross-browser (Netscape, Internet Explorer, FireFox and
Safari). This is very important for the online learning communities since educators and
learners often have a very diverse selection of hardware and software. However, Flash does
have its weaknesses. Developers need to be aware of the version issue while developing Flash
files. Similar to most software, Flash is not forward compatible (one can not run Flash 7 files
on Flash 6 player). Another concern is that major search engines are still having trouble in
indexing the content inside Flash based content packages. This makes the meta-tagging
procedure and XML content aggregation so important while creating learning objects in
Flash. This is a major reason for the Flash upgrade in Pachyderm 2.0.

Pachyderm 1.0 includes twelve Flash templates created in Flash version 4.0. The templates
are really Flash shells that contain the layout, graphic design and interaction coding (with
Action Script). The content (images and text) that makes each presentation screen unique is
provided to the template in a variable based text file (.ini file). The text files are generated in
ASCII standard encoding and meta-data was not adopted within the design. This means the
authored learning objects are language-dependent and reference-limited. With additional
considerations of forward design requirements such as templates modularization and
learning object standards, the Pachyderm team has decided to integrate the XML referencing
model into Pachyderm 2.0.

In the new implementation, Flash MX technology is being used. Content aggregations on the
presentation end are handled by XML files. Presentations are constructed by templates, and
each template references a unique XML file. The Flash templates parse the XML files in order
to fetch content into the presentation. While serving the purpose of describing the content,
these XML files are also being used for assets searching, template referencing and
presentation meta-tagging purposes.

Architecting the Elephant
Page 8

With the up-to-date Flash support, the Pachyderm 2.0 development team can fully integrate
XML-based learning standards (i.e., SCORM) with the learning objects authored using
Pachyderm 2.0. The presentation will process the IMSmanifest XML file to lay out the
navigation through the authored templates. IMSmanifest XML is the key file for SCORM 2.0
compliant learning objects. From this file, a navigational presentation map can be generated.
This key file also performs as a "messenger" to connect the learning objects with the learning
management system (LMS), which will allow institutions to fully integrate Pachyderm as a
learning object authoring platform with their existing LMS.

The next step in the Flash development of Pachyderm 2.0 is to implement the Model View
Controller framework and componentized screen elements. This will allow other Flash
designers/developers to generate new Pachyderm templates using pre-defined Flash
components and not to worry about action scripting. A further step will be to create a tool
that allows users to develop custom templates whether or not they know Flash. A truly
WYSIWYG Flash designing interface would empower subject matter experts to directly author
the templates that suit their needs.

Collaboration
The Pachyderm development team is composed of over a dozen members located
throughout the United States and Canada. Large projects even within the same institution
can be challenging, but distance can present significant obstacles to intercommunication and
collaboration, and introduces risks to the project. Early in the project, the development team
had to establish inexpensive efficient means of collaboration that would reduce the risks.

Some significant risks to the project accentuated by distance and distribution were:

a) Wasted or redundant efforts from team members in differing location due to inability
to coordinate tasks, and/or inability to coordinate concurrent development efforts.

b) Inefficient use of the resources available to the project due to a lack of understanding
of the teams’ particular strengths, inability to use each member at his or her maximum
potential, a lack of knowledge of what resources may be available to the project
(personnel or software), and/or a lack of cohesion or commonality between the
members of the development team.

c) Failing to meet expectations of the project due to a mismatch between what is
produced by the development team and what is defined in the system requirements,
and/or what is defined in the system requirements and what is expected by the
system users.

The team felt confident that the latter risk (c) had been adequately addressed by the
requirements gathering process used for the project. Any changes to be made to the
requirements would be entered into the tracker application, and would be part of the living
requirements document, easily reviewed by the development team online.

In the selection of a development architecture, the team was confident that several of the
risks detailed in (b) were covered. In choosing the development platform, the decision was
reached to use WebObjects and the APOLLO framework for a number of salient reasons,
many detailed in previous parts of the paper, but many important factors stand out as they
relate to the issues of distance collaboration. With the choice of WebObjects and APOLLO, the
team gained a high level of expertise from a majority of full-time development engineering

Architecting the Elephant
Page 9

resources. WebObjects was heavily used in the University of Calgary, and APOLLO was a
framework created by one of the staff engineers there. The other team members had no
familiarity with WebObjects, but did have significant Java and application server experience
to give an adequate starting point for learning about WebObjects. Also, with the use of
WebObjects and APOLLO, the team had at its disposal a great deal of frameworks available for
use in the application that would otherwise have had to be written from scratch for other
development architectures. The choice allowed the team to speed the level of development,
and get a lot of infrastructure for free, allowing a greater focus on the application logic itself.

After deciding on the development platform, the team realized that the first risk category
concerning waste due to disorganization and poor communication from (a) remained
unaddressed, as well as issues of team cohesion and inability to use each member at their
maximum potential from (b). The method used to address the remaining risk factor consisted
of four factors; collaboration tools, communication process, development methodologies,
and scheduled face-to-face meetings.

Collaboration Tools
Collaboration tools were absolutely essential to the success of the Pachyderm project, and
what follows is a list of the different applications employed on the project.

Subversion (Version Control) – http://subversion.tigris.org/
The mere fact that the Pachyderm project involved more than one developer working on the
same code base necessitated some sort of version control. Considering that the developers
were distributed across the continent, an easily accessed and resilient version control system
was required. Although there was a significant degree of institutional knowledge in CVS in
the group, Subversion was chosen as the software versioning system for several salient
reasons. First and foremost, it is open source and free to use, and CVS itself has a link to it on
its home page. It is considered the heir apparent to CVS by many, and many developers have
moved to supporting Subversion over CVS. Subversion appeared to be very well suited to a
distributed environment, as it used secure http for its communications, tied well into relevant
applications such as XCode (the Macintosh IDE being used for the project), and had a web
interface for easy viewing of subversion content. While CVS remains a very strong version
control system, Subversion appeared to be an overall better fit for the project.

VNC (Virtual Network Computing) – http://www.realvnc.com
Distance pair/team programming techniques required some means for developers to share a
common workspace. VNC became an early adoption to the project, because it is open source
under the GNU GPL, free to use, and very good. There are actually many clients and servers
available that use the VNC protocol, and these are available on most platforms. The team
made use of OSXvnc as the server software, and Chicken of the VNC as the client on the Mac.
Tight-VNC was used for windows.

Instant Messaging – AIM, iChat, MSN, etc.
The developers employed some sort of instant messaging on a daily basis from the very start
of the project, as it is an inexpensive (free) form of direct conversational communication that
allows for multi-member chat, and keeps a transcript log of any conversations. File sharing is
also simple through an instant messenger client. The team also used audio/video chat (via
iChat using the iSight camera) during team programming sessions, which freed up the hands

Architecting the Elephant
Page 10

for coding and allowed for easy communication. In many respects, it was almost as good as
being in the same room.

SubEthaEdit (Collaborative file editing) – http://www.codingmonkeys.de/subethaedit
Tools such as SubEthaEdit allowed for joint editing of the same document without having to
share an entire desktop, and also tracked contributions/changes from different members in
separate colors. Along with VNC, this became one of the primary tools for pair programming.

Wiki (online collaborative documentation) – http://en.wikipedia.org/wiki/
The team maintained a wiki for keeping group institutional knowledge current and
available/updateable by all members. Developers would write collaborative documents on
the wiki when the timing between participants was asynchronous, and when the platforms of
the participants were varied enough that a platform-independent solution was needed.

Macromedia Breeze (collaboration app) – http://www.macromedia.com/software/breeze/
Other collaboration tools were investigated, such as Macromedia Breeze, which did provide
for a rich environment for demonstrations, and with different intercommunications widgets
available to the user. Breeze was not an ideal match for the team's development style, and
was not used often.

Typepad (blog software) – http://www.typepad.com
The Pachyderm project team put up a blog that has been used to communicate news to the
project partners, and to act as a centralized repository for project documents. The
development team makes use of this to announce larger successes and milestones. It is a way
to keep the customer base informed as to progress, and to help keep requirements and
development in line with one another.

Communication process
As crucial as the tools being employed by the development team are the methods and habits
of communication between the members of the team. The success of the project depends on
how faithfully, regularly, honestly and easily these communications occur. The developers
used the following habits and methods for keeping in synch over vast distances.

Online Live Communication
Instant messenger became a lifeline for team members to keep in touch with one another, to
work together and share pertinent information. Audio and video chat helped immensely in
freeing up the hands to work while still communicating. The developers had daily, often
continuous contact with one another through these means.

Regular Phone Conferences
Starting bi-weekly, then progressing to weekly and then twice a week, the development team
has been holding phone conferences to help keep on track. An online free conference service
was used with the only cost being the toll charge to the dial-in number
(http://www.freeconference.com).

Online Asynchronous Communication
Email was also heavily used for intra-communication, but not as extensively as instant
messenger. Email was reserved for communications with the whole team, or to distribute

http://www.codingmonkeys.de/subethaedit
http://en.wikipedia.org/wiki/
http://www.macromedia.com/software/breeze/
http://www.typepad.com/
http://www.freeconference.com/

Architecting the Elephant
Page 11

documents to a large group at once. The team also used the Pachyderm blog, which helped
communicate successes to the whole team and to the outside world.

Development methodologies
On this project, the Pachyderm team members have adopted some methodologies from
Extreme Programming, such as "Team" or "Pair" programming, which have been extremely
valuable in producing high quality code at a faster pace than normally would have been
possible. Using VNC and iChat (or while in person), several team members would join in to a
group programming session, with one member controlling the keyboard, and the other
members watching, giving syntactical and logic corrections and thinking strategically about
the direction of the code. The affect of this methodology was multifold – first, it allowed for
the members of the development team with a stronger sense of the application frameworks
being used to disseminate that knowledge to other members, in a practical fashion that
moved the code forward, instead of taking time out of the development schedule. Second, it
built in a process of team code review, since everyone was writing the code at the same time.
Furthermore, it blurred the line of ownership of any particular piece of code, allowing for
more flexibility on code changes and updates, and helping keep a sense of team cohesion. As
a result of team programming, everyone felt an equal responsibility in the code, and felt an
equally important member of the team.

Scheduled face-to-face meetings
Of course, any long-distance project necessarily must contain a component of face-to-face
time. The group came together on a larger scale at project meetings, and during conferences
at which many members were in attendance. In addition, team members would physically
spend periods of time (typically a week at a time, every other month) working on-location
with other members of the team. This also allowed time after work for social bonding, and for
a more productive team-development environment. Sometimes nothing quite beats a bunch
of people in the same room with a white board. The team found that productivity would soar
during one of these extended visits, and would continue to remain high for weeks afterwards.
They were an integral part of the development process.

Future Plans
When planning began for Pachyderm 2.0 in October of 2003, the team came up with a lofty
vision of what the authoring tool could be. The team has spent the last year and a half
carefully pruning expectations to define a goal that is both desirable and achievable. The big
ideas, however, have not gone away. They give the project directions in which to grow. The
project is actively seeking funding to continue development of the larger vision. Once
Pachyderm 2.0 is released to the public, the team expects that user feedback will guide the
development of additional features that the community truly values.

References
Meggs, Philip B. (1992). Type and Image: The Language of Graphic Design, New York: John
Wiley & Sons, Inc., 153.
Spolsky, J. (2000) Things You Should Never Do, Part I. consulted January 28th, 2005.
http://www.joelonsoftware.com/articles/fog0000000069.html

http://www.joelonsoftware.com/articles/fog0000000069.html

	Introduction
	Interface Design
	Software Architecture
	Refactor or Rebuild
	Design Decisions
	APOLLO
	Open Source

	Pachyderm Presentation Screens
	Collaboration
	Collaboration Tools
	Subversion (Version Control) – http://subversion.tigris.org
	VNC (Virtual Network Computing) – http://www.realvnc.com
	Instant Messaging – AIM, iChat, MSN, etc.
	SubEthaEdit (Collaborative file editing) – http://www.coding
	Wiki (online collaborative documentation) – http://en.wikipe
	Macromedia Breeze (collaboration app) – http://www.macromedi
	Typepad (blog software) – http://www.typepad.com

	Communication process
	Online Live Communication
	Regular Phone Conferences
	Online Asynchronous Communication

	Development methodologies
	Scheduled face-to-face meetings

	Future Plans
	References

